

(b)

7.25 J

(a)

2.5 J

(d)

20 J

Max Marks: 60 Date: 02.10.2022

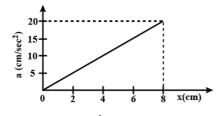
JB 1 MR BATCH PHYSICS: DCT Topic: Work Energy Power

1.	A body of mass 5 kg is placed at the origin, and can move only on the x-axis. A force of 10 N is acting on it in a
	direction making an angle of 60° with the x-axis and displaces it along the x-axis by 4 metres. The work done by
	the force is

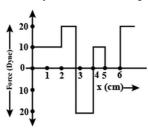
2. A force $F = (5\hat{i} + 3\hat{j})N$ is applied over a particle which displaces it from its origin to the point $r = (2\hat{i} - 1\hat{j})$ meters. The work done on the particle is

(c)

40 J


- (a) -7 J (b) +13 J (c) +7 J (d) +11 J
- 3. A horizontal force of 5 N is required to maintain a velocity of 2 m/s for a block of 10 kg mass sliding over a rough surface. The work done by this force in one minute is
- (a) 600 J (b) 60 J (c) 6 J (d) 6000 J
- 4. A box of mass 1 kg is pulled on a horizontal plane of length 1 m by a force of 8 N, then it is raised vertically to a height of 2m, the net work done is
- (a) 28 J (b) 8 J (c) 18 J (d) None of these
- 5. A 10 kg satellite completes one revolution around the earth at a height of 100 km in 108 minutes. The work done by the gravitational force of earth will be
 - (a) $108 \times 100 \times 10 \text{ J}$ (b) $\frac{108 \times 10}{100} \text{ J}$ (c) $\frac{100 \times 10}{108} \text{ J}$ (d) Zero
- 6. A position dependent force $\vec{F} = (7 2x + 3x^2)N$ acts on a small object of mass 2 kg to displace it from x = 0 to x = 5m. The work done in joule is
 - (a) 70 J (b) 270 J (c) 35 J (d) 135 J

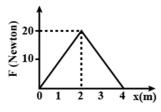
Space for Rough Work



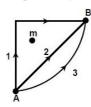
Learning with the Speed of Mumbai and the Tradition of Kota

- 7. A particle moves under the effect of a force F = Cx from x = 0 to $x = x_1$. The work done in the process is
 - (a)
- (b) $\frac{1}{2}Cx_1^2$
- (c) Cx_1
- (d) Zero
- The vessels A and B of equal volume and weight are immersed in water to a depth h. The vessel A has an opening 8. at the bottom through which water can enter. If the work done in immersing A and B are WA and WB respectively, then
 - $W_{\mathsf{A}} = W_{\mathsf{B}}$ (a)
- (b) $W_A < W_B$
- $W_{\text{A}} > W_{\text{B}}$ (c)
- (d) $W_A > = < W_B$
- Work done in time t on a body of mass m which is accelerated from rest to a speed v in time t_1 as a function of 9. time t is given by
- $\frac{1}{2}m\frac{v}{t_1}t^2 \qquad (b) \qquad m\frac{v}{t_1}t^2 \qquad (c) \qquad \frac{1}{2}\left(\frac{mv}{t_1}\right)^2t^2 \qquad (d) \qquad \frac{1}{2}m\frac{v^2}{t_1^2}t^2$
- 10. A 10 kg mass moves along x-axis. Its acceleration as a function of its position is shown in the figure. What is the total work done on the mass by the force as the mass moves from x = 0 to x = 8 cm

- (a)
- $8 \times 10^{-2} \text{ J}$
- $16 \times 10^{-2} \, \text{J}$ (b)
- (c) $4 \times 10^{-4} \,\mathrm{J}$
- $1.6 \times 10^{-3} \, \mathrm{J}$ (d)
- 11. The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x = 1 cm to x = 5 cm is



- (a) 20 ergs
- (b) 60 ergs
- (c) 70 ergs
- (d) 700 ergs



Learning with the Speed of Mumbai and the Tradition of Kota

12. The graph between the resistive force F acting on a body is shown in the figure. The mass of the body is 25 kg and initial velocity is 2 m/s. When the distance covered by the body is 5 m, its kinetic energy would be

- 50 J (a)
- (b) 40 J
- 20 J(c)
- (d) 10 J
- 13. If W₁, W₂ and W₃ represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m, find the correct relation

- (a)
- $W_1 > W_2 > W_3$ (b) $W_1 = W_2 = W_3$ (c) $W_1 < W_2 < W_3$ (d) $W_2 > W_1 > W_3$
- A particle of mass 0.01~kg travels along a curve with velocity given by $4\hat{i}+16\hat{k}~ms^{-1}$. After some time, its 14.

velocity becomes $8\hat{i} + 20\hat{j}$ ms⁻¹ due to the action of a conservative force. The work done on particle during this

- interval of time is
 - 0.32 J
- (b) 6.9 J
- (c) 9.6 J
- (d) 0.96 J
- A particle of mass 'm' and charge 'q' is accelerated through a potential difference of 'V' volt. Its energy is 15.
 - qV(a)

(a)

- mqV(b)
- $\left(\frac{q}{m}\right)V$ (c)

Max. Marks: 60 Date: 02.10.2022

JB 1 MR BATCH MATHEMATICS : DCT

Topic: Permutation

16.	In how	many ways can a c	ricket el	even choose a captair	and a v	ice-captain from amo	ngst the	mselves?
	(a)	19	(b)	21	(c)	90	(d)	110
17.	Three j	-	ributed i	in a class of 10 stude	nts. If a	students can get onl	y one pr	rize, then this can be
	(a)	30 ways	(b)	720 ways	(c)	13 ways	(d)	None of these
18.	How m	nany 2-digit number	can be f	Formed from the digit	s 1, 3, 5,	7, 9 if repetition is no	ot allowe	ed?
	(a)	9	(b)	20	(c)	25	(d)	16
19.	How m	nany 3-digit number	s can be	formed from the digi	ts 3, 4, 6	5, 0, 7, 8 if repetition i	s not all	owed?
	(a)	29	(b)	100	(c)	180	(d)	None of these
20.	How m		r greater	than 7000 can be for	rmed fro	om the digits 1, 2, 3,	5, 7, 8, 9	9, if repetition is not
	(a)	160	(b)	260	(c)	360	(d)	None of these
21.	How n		er, divisi	ble by 5, can be for	med fro	m the digits 3,1,7,	0, 9, 5	, if repetition is not
	(a)	960	(b)	560	(c)	216	(d)	384
22.	If ⁿ P ₇ =	= 210 (ⁿ P ₅), then: n	=					
	(a)	21	(b)	20	(c)	10	(d)	None of these

Space for Rough Work

Learning with the Speed of Mumbai and the Tradition of Kota

	_				
22	T£ 2nD	$= 2(^{n}P_{4}),$	4 la a sa		
23.	II P3 =	= Z(P4).	unen	: II =	=

- (a) 8
- (b) 6
- (c) 12
- (d) 4

24. If
$${}^{2n}P_{n+1}: {}^{2n-2}P_n = 56:3$$
, then : $n =$

- (a) 4
- (b) 67
- (c) 10
- (d) 3

25. If
$${}^{10}P_r = {}^{9}P_5 + 5 ({}^{9}P_4)$$

- (a) 2
- (b) 5
- (c) 3
- (d) 4

26. If
$${}^{15}P_r$$
: ${}^{16}P_r = 3:4$, then: $r =$

- (a) 2
- (b) 3
- (c) 4
- (d) 7

27.
$$(n+1) \cdot {}^{n}P_{r} =$$

- (a) ${}^{n}P_{r+1}$
- (b) $^{n+1}P_r$
- (c) $^{n+1}P_{r+1}$
- (d) $^{n+1}P_{r-1}$

- (a) 1440
- (b) 3600
- (c) 5040
- (d) None of these

29. Number of distinct (distinguishable) permutations of letters of the word MISSISSIPPI is

- (a) $\frac{(11)!}{(4+4+2)!}$
- (b) $\frac{(11)!}{2(4!)^2}$
- (c) (11)!
- (d) None of these

30. If
$$^{n+3}P_6$$
: $^{n+2}P_4$ = 14:1, then: n =

- (a) 2
- (b)

- (c) 8
- (d) 6

Space for Rough Work

Max Marks: 60 Date: 02.10.2022

JB 1 MR BATCH PHYSICS : DCT ANSWER KEY

Topic: Work Energy Power

1.	(d)	2.	(c)	3.	(a)	4.	(a)	5.	(d)
6.	(d)	7.	(b)	8.	(b)	9.	(d)	10.	(a)
11.	(a)	12.	(d)	13.	(b)	14.	(d)	15.	(a)

Max Marks: 60 Date: 02.10.2022

JB 1 MR BATCH MATHEMATICS: DCT ANSWER KEY

Topic: Permutation

16.	(d)	17.	(b)	18.	(b)	19.	(b)	20.	(c)
21.	(c)	22.	(b)	23.	(a)	24.	(a)	25.	(b)
26.	(c)	27.	(c)	28.	(a)	29.	(b)	30.	(b)